Variable frequency drive Constant Torque/Variable Torque
A typical variable torque application would be a centrifugal pump. A typical constant torque application would be a conveyor, and there are positive displacement pumps that are also constant torque. Have a talk with a mechanical engineer, get them to show you curves and explain.
DBR stands for Dynamic braking resistor. Regeneration will happen when the motor rotates a speed higher than the speed which corresponds to the frequency setpoint ie.. the rotor speed is more than the speed of the rotating magnetic field.
Regeneration feeds back energy to the drive which results in DC bus overvoltage. To prevent the drive from tripping due to DC bus overvoltage the DBRs are used. The regenerative energy is discharged in the resistor as heat.
Regenerative Breaking - we used to have VFD on a vehicle rolling road. So when the car is travelling faster than the VFD, the VFD generate back into the power supply - causing a break effect. If you had a large mass- large inertia that you want to stop quickly, you need to break the load- you can do that with regenerative breaking. Otherwise, disconnecting the variable frequency drive, will mean your load just freely rotates, and that can mean it will take 30 minute to come to a stop for a large inertia.
Active Front end- I first came across this term with ABB. It is all to do with how to mitigate harmonics from VFDs. You can use phase shift transformers, but with modern electronics, you can use a opposite phase current to counter act the harmonics generated from the VFD. So the overall impact on the network is small.
In active front end technology the rectifier is basically an inverter with IGBTs.
The main advantage are:
1) Low current THD <5 %
2) It is basically a four quadrant rectifier .Referring my last post please note that you will not require a DBR with AFE. The increase in voltage of DC Bus due to regeneration can be fed back to the input AC supply in the form of energy. So you don't require a DBR.
3) AFE drives have very good immunity to input voltage fluctuations.
Just an advice. Please go through variable frequency drive literatures (available in plenty) to have a good understanding of the different VFD technologies.
Selection of VFD requires proper understanding of the VFDs and the overall electrical system. There are lots of marketing gimmicks in the world of VFD. Always be careful before selecting a VFD specially higher KW drives.
For large drives, you need to speak with supplier to configure your machine correctly. There are many options, but yes active front ends are available. But there are other solutions; ASI Robicon use a current driven VFD, so harmonics are lessened in the first place, so an active front end is not the right terminology. It is a different solution. I used a 10MW version of that type of ac drive. I think Siemens have bought the company since.
DBR stands for Dynamic braking resistor. Regeneration will happen when the motor rotates a speed higher than the speed which corresponds to the frequency setpoint ie.. the rotor speed is more than the speed of the rotating magnetic field.
Regeneration feeds back energy to the drive which results in DC bus overvoltage. To prevent the drive from tripping due to DC bus overvoltage the DBRs are used. The regenerative energy is discharged in the resistor as heat.
Regenerative Breaking - we used to have VFD on a vehicle rolling road. So when the car is travelling faster than the VFD, the VFD generate back into the power supply - causing a break effect. If you had a large mass- large inertia that you want to stop quickly, you need to break the load- you can do that with regenerative breaking. Otherwise, disconnecting the variable frequency drive, will mean your load just freely rotates, and that can mean it will take 30 minute to come to a stop for a large inertia.
Active Front end- I first came across this term with ABB. It is all to do with how to mitigate harmonics from VFDs. You can use phase shift transformers, but with modern electronics, you can use a opposite phase current to counter act the harmonics generated from the VFD. So the overall impact on the network is small.
In active front end technology the rectifier is basically an inverter with IGBTs.
The main advantage are:
1) Low current THD <5 %
2) It is basically a four quadrant rectifier .Referring my last post please note that you will not require a DBR with AFE. The increase in voltage of DC Bus due to regeneration can be fed back to the input AC supply in the form of energy. So you don't require a DBR.
3) AFE drives have very good immunity to input voltage fluctuations.
Just an advice. Please go through variable frequency drive literatures (available in plenty) to have a good understanding of the different VFD technologies.
Selection of VFD requires proper understanding of the VFDs and the overall electrical system. There are lots of marketing gimmicks in the world of VFD. Always be careful before selecting a VFD specially higher KW drives.
For large drives, you need to speak with supplier to configure your machine correctly. There are many options, but yes active front ends are available. But there are other solutions; ASI Robicon use a current driven VFD, so harmonics are lessened in the first place, so an active front end is not the right terminology. It is a different solution. I used a 10MW version of that type of ac drive. I think Siemens have bought the company since.
EMI/EMC is rather a subjective topic than theoretic, but we shall look at it with start from noise prevention then noise suppression.
Prevention or design in the solution is needed to concentrate on noise ...
In order to do an extensive and credible study to explore renewable energy potential in each Taluka, State and Central Government Can hire international Consultancies with Video Documentation with GPRS MAPS to ...
The harmonics are created by the loads that the transformer supplies power to. If your loads include a high percentage of electronic loads like IT equipment, electronic ballast lighting, electronic motor ...
Usually in your case there should be Electrical as well as Mechanical interlocks between the mains incomer & genset main breaker. ie both Sources will never be in Synchronism ( will not feeding the same ...
There being a lot more than 12 guidelines to follow. In my experience, there are plenty of people that can design a panel but if they haven't gone to the field with it then they haven't been able to learn from ...
Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.
Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ...
A frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ...
Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ...
Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ...
Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...
electrical part designing
Is heat gain in centrifugal pumps the result of bearing friction alone?
Surge protection device for control cabinet in industrial yard?
Problem with interfacing rs485 cable with PC
Energy Storage at Grid Level
How to become a professional in PV system?
Power Transducer to measure output power Transformer
Canonical form of DC converter
Is heat gain in centrifugal pumps the result of bearing friction alone?
Surge protection device for control cabinet in industrial yard?
Problem with interfacing rs485 cable with PC
Energy Storage at Grid Level
How to become a professional in PV system?
Power Transducer to measure output power Transformer
Canonical form of DC converter