Wiki
Home » Blog » Wiki » Energy Efficient Motor VS Standard motor

Energy Efficient Motor VS Standard motor

This is a very simplified comparison for a very complex issue. Every motor manufacturer is somewhat different in their approach, and there are literally thousands of design details in each machine that can be accommodated as the designer balances efficiency VS performance VS cost VS reliability VS safety VS manufacturability.

To generalize a bit, take a look at the following list. Not everything is there (not by a long shot!) but there should be enough to give you a reasonable overview. Note that some items are "design" related, while others are "operation" related.

1. Use a lower loss material for both stator and rotor laminations.
2. Use a larger copper cross-section for the same power rating.
3. Skew rotor winding with respect to stator winding.
4. Use more magnetic material (diameter, length, or both) to reduce flux densities.
5. Effectively size the machine for a somewhat higher rating than nameplate (because the typical peak of the efficiency curve occurs somewhere between 70 and 85 percent "rated" load).
6. Operate the machine at reduced temperatures and/or increase coolant flow.
7. Limit input frequency and/or voltage variation to tighter tolerance (note that this is a specification approach, not a manufacturing approach).
8. Better bearings / lubrication to reduce friction loss.
9. More care taken with internal geometry - i.e. closed slots, large air gaps, generous tooth dimensions, smooth surfaces, etc - to reduce windage.

Post a Comment:

    
Calculate (5 + 2) =

You may also like:

If referring to the acoustic noise generated at or around the PWM frequency of the inverter, then you may notice a very slight difference between "BLDC" and an induction motor. Assume that it's referring to a ...
I once uprated a set of 3x 500KVA 11/.433kv ONAN transformers to 800KVA simply by fitting bigger radiators. This was with the manufacturers blessing. (not hermetically sealed - there were significant ...
If I had a "critical" operation with a double-action cylinder, hydraulic or pneumatic, I'd put proximity sensors on both ends of travel, typically with small metal "marker" on the shaft. Each input "in series" ...
We have system which is connected to 16kV/2.4 utility transformer (delta on secondary) and we are using 2.kV/480V transformer for loads after 2000ft. Utility wants to protect against ground fault in the ...
Generally, variable frequency drive contains two components: rectifier and inverter. The rectifier converts incoming AC power to DC power, then the inverter converts DC power to the desired frequency AC power. ...
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.

Featured

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion