Energy saving
Home » Blog » Energy saving » Why companies don't invest in variable frequency drive control

Why companies don't invest in variable frequency drive control

Investing in energy efficient variable frequency drives (VFD) seems like an obvious path to cutting a company's operating costs, but it is one that many companies ignore. This article explores some possible reasons for this reluctance to invest in VFD.

There is a goldmine of savings waiting to be unlocked by controlling electric motors, but the reluctance to take advantage of this is a very puzzling phenomenon. Motors consume about two thirds of all electrical energy used by industry and cost 40 times more to run than to buy, so you would think optimizing their efficiency would be a priority. The reality is that this good idea is not always turned into good practice and many businesses are missing out on one of the best opportunities to boost profits and variable frequency drive growth.

It might surprise you to learn that your average 11kW motor may cost about £500 to buy but £120,000 to run at 8,000 hours per year over a 15-year lifetime (and that isn't even accounting for inevitable increases in energy prices). It's worth considering the payback on any investment in motor control that will reduce this significant running cost, such as using VFDs to control speed, or implementing automated starting and stopping when the motor is not needed. Payback times can often be less than 1 year and, of course, the savings continue over the lifetime of the system, particularly as energy costs rise.

The question that often arises when I talk about this subject to people is: "If the savings are so great, why don't more people do this?" It would appear to be something that fits into the nobrainer category, however there are three main barriers to the wider uptake of motor control with variable frequency drive, none of which should stop common sense from prevailing – but all too often they do.

The first barrier is a lack of awareness of how much energy is being consumed, and where, in a business. A surprising number of companies do not have a nominated energy manager, still less have energy management as a dedicated job function or have a board member responsible for this significant cost. Those that do measure their energy consumption often have a financial rather than technical bias, so solutions tend towards renegotiating supply contracts, rather than reducing consumption.

The second barrier stems from the economic climate and the level of uncertainty about future events and policies. Businesses are still reluctant to invest in improvement projects, despite short payback periods and the ongoing benefits. The short-term focus is on cutting costs, not on spending money, even to the detriment of future growth. This make-do-and-mend attitude is often proudly touted as a strength, but it is ultimately a false economy. Saving money by cutting capital budgets, reducing staff and cancelling training is damaging to a business and to morale, making it difficult to grow again when the opportunity arises. Saving money by reducing energy consumption makes a business more competitive, while keeping hold of key skills and resources.

The third barrier is a focus on purchase cost, rather than lifetime cost. Whenever a business invests in a machine, a production line or a ventilation system, you can be sure they will have a rigorous process for getting several quotes, usually comparing price, with the lowest bid winning. Something that is not often evaluated is the lifetime energy cost of the system. Competing suppliers will seek to reduce the capital cost of the equipment but without considering the true cost for the operator, including energy consumption. What if the cost of automation and motor control added £700 to the purchase cost? Many suppliers will consider cutting this from the specification. But what if that control saved £1,400 per year in energy? It could be sold to the customer as a more cost-effective proposition.

So how do we get over these barriers and help businesses to take a longer-term view? There isn't one single solution, but in my view it requires a joined-up approach from the whole supply chain, such as automation vendors, machine-builders, systems integrators, contractors, installers, facilities managers and end-users to start viewing the true cost of any equipment as the lifetime operating cost and not just how much the purchase order is for.

Post a Comment:

    
Calculate (6 - 6) =

You may also like:

How to make our systems so friendly that they do not need technicians to help diagnose problems? Most of the more obvious answers have been well documented here but to emphasize these points it is normally the ...
There are hundreds of applications for a frequency inverter. I use them on a pump to test pumps with voltages from 208-600VAC 3PH 50 and 60 HZ. You just have to size the frequency inverter to the largest 208 ...
Variable frequency drive includes main circuit, power circuit, IPM drive and protection circuits, cooling fan and other several parts. The structure is mostly unitized or modular. Incorrect or unreasonable ...
Having products and services in the same company can either be treated as an opportunity or as a constraint. I strongly believe that having services and products in the same company should be treated as an ...
Dell D630 - it is the best laptop for field use I have used. And for some applications standard RS232 port is a must. We have Freja 300 test set which totally refuses to communicate with PC via widely ...
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.

Featured

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion