Experience
Home » Blog » Experience » Transformer uprating

Transformer uprating

I once uprated a set of 3x 500KVA 11/.433kv ONAN transformers to 800KVA simply by fitting bigger radiators. This was with the manufacturers blessing. (not hermetically sealed - there were significant logistical difficulties in changing the transformers, so this was an easy option). Limiting factor was not the cooling but the magnetic saturation of the core at the higher rating. All the comments about uprating the associated equipment are relevant, particularly on the LV side. Increase in HV amps is minimal. Pragmatically, if you can keep the top oil temperature down you will survive for at least a few years. Best practice of course is to change the transformer!

It is true that you can overload your transformer say 125 %, 150 % or even greater on a certain length of time but every instance of that overloading condition reflects a degradation on the life of your transformer winding insulation. Overload your transformer and you also shorten the life of your winding insulation. The oil temperature indicated on the temperature gauge of the transformer is much lower than the hotspot temperature of the transformer winding which is a critical issue when considering the life of the winding insulation. Transformers having rating of 300 KVA most probably do not even have temperature indicating gauge. The main concern is how effectively can you lower the hotspot temperature in order that it does not significantly take away some of the useful life of your transformer winding insulation.

Post a Comment:

    
Calculate (9 * 1) =

You may also like:

If I had a "critical" operation with a double-action cylinder, hydraulic or pneumatic, I'd put proximity sensors on both ends of travel, typically with small metal "marker" on the shaft. Each input "in series" ...
This is a very simplified comparison for a very complex issue. Every manufacturer is somewhat different in their approach, and there are literally thousands of design details in each machine that can be ...
We have system which is connected to 16kV/2.4 utility transformer (delta on secondary) and we are using 2.kV/480V transformer for loads after 2000ft. Utility wants to protect against ground fault in the ...
If referring to the acoustic noise generated at or around the PWM frequency of the inverter, then you may notice a very slight difference between "BLDC" and an induction motor. Assume that it's referring to a ...
Generally, variable frequency drive contains two components: rectifier and inverter. The rectifier converts incoming AC power to DC power, then the inverter converts DC power to the desired frequency AC power. ...
Gozuk Service Gozuk Blog: all about electric motor control & drives industries development in energy saving applications.

Featured

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable ... energy consumedA frequency inverter controls AC motor speed. The frequency inverter converts the fixed supply frequency (60 Hz) to a ... Motor starter (also known as soft starter, motor soft starter) is a electronic device integrates soft start, soft stop, ... Soft starter allows the output voltage decreases gradually to achieve soft stop, in order to protect the equipment. Such as the ... Soft Starter reduces electric motor starting current to 2-4 times during motor start up, reduces the impact to power grid during ...

In Discussion